
OCI Functions

Are Fun

Simplify, Automate, and Scale with
Serverless Computing

Speaker

Mike Miller
Syntax Senior Solution Architect

• Over 25 years of working with enterprise
software and information security technologies

• Experience with enterprise software
implementation and support, cloud operations,
and executing compliance and risk
management programs.

• A CISSP, Certified Information Systems
Security Professional

• Oracle ACE Associate

Syntax

• Founded in 1972 in Montreal, Canada, Syntax
is a global company with 3,600+ employees
across 15 countries

• Syntax provides full-stack, full-lifecycle Cloud
Managed Services and Application Managed
Services focused on leading ERP solutions
such as JD Edwards, Oracle E-Business Suite,
and SAP

• Syntax is a multicloud partner and supports
OCI, AWS, Azure, GCP, and Syntax Enterprise
Cloud®

• Our ERP solutions include an array of value-
add services, including our AI-driven monitoring
and automation platform, CxHub customer
experience portal, security management, and
FinOps

Agenda

1. OCI functions

• What are they

• Use cases and architecture

2. Creating and Deploying OCI Functions

• Best practices

• When things go wrong

• Limitations

3. Live Demo

• Execution and possibly deploy

4. Closing Comments

Show of hands:

• Already using Functions today?

• Know what requirements.txt is?

• Know what venv is?

• Dockerizing Python scripts today?

• Heard of or use OCI Cloud Shell or Editor?

Creating Functions

Overview and Troubleshooting

What Are OCI Functions?

Definition

• OCI Functions is a serverless compute service in Oracle
Cloud Infrastructure (OCI) that lets you write and
execute lightweight, scalable code without managing
infrastructure.

• Based on the Fn Project, an open-source container-
native serverless platform.

Key Features

• Event-Driven Execution: Functions automatically
respond to events like API calls, file uploads, or
scheduled tasks.

• Scalable & Cost-Effective: Scale up or down based on
demand and pay only for the resources used.

• Language Support: Python, Go, Java, Node.js, Ruby, C#

Why Are OCI Functions Fun?

Key Benefits

• Event-Driven: Automatically trigger
workflows.

• Cost-Effective: Pay only for what you use.

• Scalable: Automatically adjusts to traffic.

• Secure: Integrated with OCI's Identity and
Access Management (IAM).

• Language Flexibility: Use your favorite
programming language.

• Integration: Works seamlessly with OCI
services like API Gateway, Object Storage,
Events, and more.

Why Are OCI Functions Fun?

• Freedom from Infrastructure: Focus
on code, not servers.

• Easy to Experiment: Build and test
prototypes quickly.

• Event-Driven Magic: Automate
workflows by triggering functions with
events.

• Cost Efficiency: Only pay for what you
use – perfect for small, experimental
projects or large-scale production
workloads.

OCI Function Example

OCI Provided Functions

Ideas For OCI Function

1. Automated File Processing

• Trigger functions when files are uploaded to Object
Storage (e.g., compress or process images).

2. Real-Time Data Transformation

• Process and transform streaming data for analytics
or monitoring pipelines.

3. Chatbot Backend

• Run serverless logic to power chatbots or
customer support workflows.

4. Notifications and Alerts

• Send notifications via email, SMS, or Slack when
specific events occur.

5. Scheduled Tasks

• Automate periodic tasks like database cleanups or
data backups.

6. API Integration

• Build lightweight APIs to connect and integrate
with third-party services.

7. IoT Data Processing

• Process sensor data from Internet of Things (IoT)
devices quickly and scalably.

8. Machine Learning Inference

• Deploy models for real-time predictions without
managing servers.

9. Serverless Webhooks

• Respond to webhooks for CI/CD pipelines or
application events.

10. Fraud Detection

• Analyze transactions in real-time to identify
fraudulent activities.

11. Content Moderation

• Use AI models or rules to filter and moderate
uploaded content.

12. DevOps Automation

• Automate deployments, health checks, or scaling
workflows in DevOps pipelines.

GitHub Examples And Demo Code

https://github.com/oracle-samples/oracle-functions-samples

Mike Miller’s OCI Functions

• Drain IAM dormant users

• IAM Status for SSO

• Create iCinga Alerts and ServiceNow incidents using specific CMDB CI info

• Backup up OIC instances on a schedule

• Backup of OAC instances on a schedule

• CVE Reporting for EBS (Full Stack) using MySQL DB and Object Storage

• OCI Inventory and delta reporting

• OCI Vault backups

• Sweep with criteria for CloudGuard and Cloud Advisor raise alarms and tickets

Are Functions Free? No. But There Is a Free Tier

Free Tier

• Execution Time of 400,000 GB-seconds

per month

• 2 million requests per month

Paid Tier

• Execution Time at $0.00001417 per
gigabyte-second for execution time.

• Requests are charged at $0.20 per
million.

Example

•Requests: 500,000 per month.

•Execution Time: 2 seconds per request.

•Allocated Memory: 512 MB (0.5 GB).

Step 1: Execution Cost Memory (GB)} Execution

Time 2 seconds x 0.5 GB x 0.00001667 x

500,000 = $8.34

Step 2: Request Cost 500,000 x 0.0000002 =

$0.10

Total Monthly Cost = $8.34 + $0.10 = $8.44

OCI Function Cost Factors

1.Memory Allocation:
1. Higher memory allocation increases execution cost.

2. Choose the minimum memory your function needs to run efficiently.

2.Execution Time:
1. Optimize your code to reduce execution time.

3.Number of Requests:
1. Reduce unnecessary function calls by optimizing triggers.

Creating And Deploying Functions

Following The Instructions Is Easier Than Not

Step One: Use the OCI Cloud Editor To Write Your Code

Use Cloud Shell/Editor
• Delegation tokens are

simpler than working
through authentication and
authorization issues off
your laptop

• Test your code successfully
from Cloud Shell/Editor as
your first step

This Is The Cloud Shell

This Is The Cloud Code Editor

Step Two: Following The Instructions Is MUCH Easier
Than Not

1.Write and test your code

2.Developer Tools --> Application -->
Function

Deploying Functions: Mike’s Cheat Sheet

1. Open OCI Cloud Shell
2. Source and activate the venv
3. fn init --runtime python syntax_oci_function_demo
4. Change the directory into the newly created directory

with the same name as the function

5. Copy your Python code into this directory
6. Edit the func.yaml file.
7. pip freeze > requirements.txt
8. Remove setup.py and any working or junk files
9. fn list context
10.fn use context us-ashburn-1
11.fn update context oracle.compartment-id

ocid1.compartment.oc1..aaaaaaaai3wyta3bzc467dw4
hjhjvqiesqqs5oewhxokbbdnstbaug5tqoja

12.fn update context registry iad.ocir.io/idk409otgims
13.docker login -u

'idk409otgims/Michael.Miller@syntax.com' iad.ocir.io
14.Type my password
15.fn -v deploy –app syntax_oci_function_demo

When Things Go Wrong Deploying a Function

• Cloud Shell editor is better than a laptop

• Manually run your function from Cloud Editor or Shell

• Confirm using the correct venv

• Review func.yaml file
• Check your spelling carefully
• Ensure space AFTER your *.py script and the function ‘handler’

entrypoint: /python/bin/fdk /function/SyntaxOCImonitorDriver.py handler

• Requirements.txt must be correct
• Use Freeze to recreate if needed: pip freeze > requirements.txt

• Don’t copy in the setup.py file from your laptop into the deployment directory

• Confirm version of Python: 3.11 for Functions and 3.8 for Cloud Shell/Editor vs your laptop

• Get no space left on device. The cloud shell is limited to 5 GB! If all else fails: csreset -a

Don’t Mess Up the Func.yaml File

Fn init will generate a a
directory with a demo
file func.yaml that you
need to edit
• Get the memory correct

• Match the name exactly

• Note the spaces
between the python
binary, your script and
the handler entry
function

fn init --runtime python <name of your function>

The Handler Function

If you want to use OCI
application parameters – read
this slide carefully – you need
an entry point function with
two parameters:

• ctx

• data

OCI Function Limits

OCI Functions
have regional
limits

Most important
Functions will
execute for a
maximum of
500 seconds
(five minutes)!

source Limit Name Description Scope
Oracle Universal

Credits
Pay As You Go or

Trial

Applications application-count Number of applications Region 20 10

Functions function-count Number of functions Region 500 50

Total memory for
concurrent function
execution

total-concurrency-
mb

Overall total amount of
memory available to
allocate for concurrent
execution of all functions in
the region. Actual memory
usage is always less than or
equal to this amount.

Region

60 GB(180 GB for a
region with three

availability
domains)

60 GB(180 GB for a
region with three

availability
domains)

Total memory for
provisioned
concurrency

provisioned-
concurrency-mb

Overall total amount of
memory available to
allocate for provisioned
concurrency for all
functions in the region.
Actual memory usage is
always less than or equal to
this amount.

Region 40 GB 40 GB

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#Functions_Limits

Functions And Temp Files

Deployed OCI Functions can
access the file system of the
container in which it's
running as follows:
• the function can read files from

all directories

• the function can write files to
the /tmp directory

https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsaccessinglocalfilesystem.htm

Maximum memory
threshold for the

function (MB)

Maximum allowed
size of /tmp (MB)

Maximum allowed
number of files
(inodes) in /tmp

128 MB 32 MB 1,024

256 MB 64 MB 2,048

512 MB 128 MB 4,096

1024 MB 256 MB 8,192

2048 MB 512 MB 16,384

3072 MB 768 MB 24,576

Define Function Parameters

Define (static0 parameters to make it easier to invoke your function:
fn invoke syntax_oic_automation syntax_oic_automation

Save this for syntax calling with dynamic not

static parameters:

echo -n

'{"yaml_config_file":"SyntaxiCingaMonitorin

gConfigs-oicsTenancy.yml"

,"bucket":"SyntaxIcingaMonitoring",

"oci_service": "IAM"}'| fn invoke

syntax_oci_automation_and_monitoring_v3

syntax_oci_automation_and_monitoring_v3

Example: Notification Topic Calling A Function

Example: OCI Resource Scheduler Calling A Function

Calling Functions

Live Demo If We Are Lucky

Live Demo From

• Deploy a function

• Then call it

Closing Comments

Functions Are Fun

OCI Functions Are
Fun

Have script? Make it a function!

Remember

• Use the Cloud Code Editor to write code

• Test first: 5 minutes and done!

• Make sure requirements.txt is correct

• Keep in mind the OCI Resource scheduler

Why are OCI Functions fun?
• Zero Server Hassle: Focus on writing code, not

managing infrastructure.
• Scalable: Automatically adjusts to traffic.
• Seamless Integration: Easily connect with other OCI

services.
• Event-Driven: Automatically trigger workflows.
• Cost-Effective: Pay only for what you use.
• Secure: Integrated with OCI's Identity and Access

Management (IAM).

Thank You

For Attending!

Please complete the session survey

in the conference app.

Q&A
Michael.Miller@syntax.com

	Slide 1: OCI Functions Are Fun
	Slide 2: Speaker
	Slide 3: Syntax
	Slide 4: Agenda
	Slide 5: Creating Functions
	Slide 6: What Are OCI Functions?
	Slide 7: Why Are OCI Functions Fun?
	Slide 8: OCI Function Example
	Slide 9: OCI Provided Functions
	Slide 10: Ideas For OCI Function
	Slide 11: GitHub Examples And Demo Code
	Slide 12: Mike Miller’s OCI Functions
	Slide 13: Are Functions Free? No. But There Is a Free Tier
	Slide 14: OCI Function Cost Factors
	Slide 15: Creating And Deploying Functions
	Slide 16: Step One: Use the OCI Cloud Editor To Write Your Code
	Slide 17: This Is The Cloud Shell
	Slide 18: This Is The Cloud Code Editor
	Slide 19: Step Two: Following The Instructions Is MUCH Easier Than Not
	Slide 20: Deploying Functions: Mike’s Cheat Sheet
	Slide 21: When Things Go Wrong Deploying a Function
	Slide 22: Don’t Mess Up the Func.yaml File
	Slide 23: The Handler Function
	Slide 24: OCI Function Limits
	Slide 25: Functions And Temp Files
	Slide 26: Define Function Parameters
	Slide 27: Example: Notification Topic Calling A Function
	Slide 28: Example: OCI Resource Scheduler Calling A Function
	Slide 29: Calling Functions
	Slide 30: Live Demo From
	Slide 31: Closing Comments
	Slide 32: OCI Functions Are Fun
	Slide 33
	Slide 34

